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Simultaneous development of laminar Newtonian flow and heat transfer in helical pipes 
is numerically studied. The governing equations are fully parabolized in the axial direction 
and are written in an orthogonal helical coordinate system. For the special case of a torus, 
the numerical results for Nusselt number agree well with published data. The Nusselt 
number in the developing region is found to be oscillatory. The asymptotic Nusselt number 
and the thermal entrance length are correlated with the fluid Prandtl number and the flow 
Dean number, Dn = Re 21/2. Here Re is the flow Reynolds number and 2 is the 
dimensionless curvature ratio. 

When torsion is dominant, the asymptotic Nusselt number decreases while the thermal 
developing length increases with ~/, where 7 ( = r/2-I/2Dn-1/2) is the flow-pattern transition 
parameter for high Dean number flows. Here ~/ is the dimensionless torsion. When 7 is 
large, the asymptotic N usselt number tends to the limits corresponding to a Poiseuille flow. 
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1. Introduction 

Fluid flow and heat transfer in helically coiled pipes of constant 
circular cross section are important in many industrial 
processes. In terms of space conservation, helically coiled pipes 
can offer improved heat transfer efficiency in comparison to 
straight pipes. Owing to the complexity of the flow in helical 
pipes that have a finite pitch, most numerical and experimental 
studies deal with the special case of a torus, i.e., a helical pipe 
of zero pitch. These studies are summarized by Berger et al. 
(1983), Nandakumar and Masliyah (1986), Ito (1987), and 
Berger (1991). 

For the case of a torus, simultaneous development of fluid 
flow and heat transfer was treated by Patankar et al. (1974). 
Developing heat transfer from a fully developed flow in a torus 
was studied by Tarbell and Samuels (1973) for the uniform wall 
temperature condition. Akiyama and Cheng (1974a, b) studied 
developing laminar forced convection for both uniform 
constant wall temperature and constant heat-flux conditions. 
They confirmed, in principle, the experimentally observed 
oscillations in the Nusselt number reported by Dravid et al. 
(1971), Balejova et al. (1977), and Janssen and Hoogendoorn 
(1978). The latter correlated the thermal entrance length and 
found it to be shorter than that for a straight pipe. 

Fully developed flows in helical pipes of finite pitch were 
numerically studied by Liu (1992) and Liu and Masliyah 
(1993b). By employing a loose coiling analysis, these authors 
arrived at two controlling parameters, namely, the Dean 
number, Dn, and the Germano number, Gn. The Dean number 
is a measure of the ratio of the square root of the product of 
inertial and centrifugal forces to the viscous forces. The Dean 
number is given by Dn = Re 21/2. The Germano number, 
Gn = Re ~/, is a measure of the ratio of the twisting to the 
viscous forces. 
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The Germano number is embedded in the body-centered 
peripheral velocity, ¢ = u  3 -Gnrul/hl, when 2--*0. Al- 
though ~ is not an orthogonal velocity component, it is the 
transport velocity in the generic peripheral direction. By 
comparing the source terms of the momentum equation in 
terms of the body-centered peripheral velocity component, ¢, 
and using the argument that at high Dean number flows, the 
axial pressure gradient becomes proportional to the square 
root of Dn, one can arrive at a new flow transition group 
7=Gn/Dn3/2=r / (2Dn)  -1/2. When 1,>0.2, the flow is 
one-vortex type (or swirl-like) when viewed in the generic 
coordinate system. When I' < 0.2, the flow is two-vortex type. 
When 7 < 0.01, the helical flow problem can be ,~proximated 
by a toroidal flow (Dean) problem (Liu and Masliyah, 1993b). 

Steady developing flows in a helical pipe of finite pitch were 
studied by Liu (1992) and Liu and Masliyah (1993c). They 
qualified the use of the parabolized equations and obtained 
some new results on the developing flow behavior. They found 
that when the torsion is dominant, the flow in helical pipes 
tends to be the same as that in a straight pipe. When torsion is 
small, the developing flow is oscillatory and develops more 
quickly than that in a straight pipe. 

There are no literature studies on developing heat transfer 
in helical pipes that have a finite pitch. It is interesting to note 
that simultaneous developing flow and heat transfer with a 
uniform constant temperature have not been studied as yet for 
the case of a torus. 

In this paper, the Separation Method (Liu 1992; Liu and 
Masliyah 1993a) is used to solve the simultaneous developing 
laminar flow and forced-convective heat transfer problem in 
helical pipes of a finite pitch. The coordinate system used is the 
one first introduced by Germano (1982). 

2. Governing equations 

Figure 1 shows a sketch of a helical coil and its relevant 
reference coordinate systems and parameters. It can be shown 
that a helical system can be established in reference to the 
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master Cartesian coordinate system ~ (xx, x2, Xa). The local 
vectors (.N, B, T) originated on the generic curve of the 
helix can be mapped correspondingly to the master Cartesian 
coordinate system (Liu, 1992) by 

/~ = (R~ cos q~, Rc sin tp, bs) (1) 

dK (--~.l/2Rle/2 sin q~, 1/2 1/2 = - - =  2 R, cosq~,b) (2) 
ds 

1 d~ 
~7 - - ( - c o s  tp, - s i n  q~, 0) (3) 

2 ds 

/~ = ~ × ~7 = (b sin q~, - b  cos ~o, 21/2R~/2) (4) 

[ ( Yl ~o=s  R E+\2n/  d (5) 

where 

b = (rIH/2n) 1/2 

/~ is the global coordinate vector at the point of 
consideration O on the generic curve. The generic curve is the 
track of a particle moving along the center of the helical pipe. 

(shown as s in Figure 1), N, and /~ are the tangential, 
normal, and binormal to the generic curve at the point of 
consideration on the generic curve, respectively. Here, s is the 
dimensionless curve length parameter along the generic curve, 
s = s'/a. The orthogonality of a helical coordinate system can 

N o t a t i o n  
a Radius of pipe, dimensional 
b Torsion parameter, (~iH/2~) 1/2 
/~ Binormal 
Cp Heat capacity, dimensional 
Dn Dean number, Re 21/2 
d~ Extra diagonal term 
f Fanning friction factor 
f (s)  Function of s 
g Matric coefficient 
Gn Germane number, Re q 
H Pitch 
h Heat transfer coefficient, dimensional 

Average heat transfer coefficient 
h i /-coordinate metrics 
i, j Index 
k Thermal conductivity, dimensional 
LNu Thermal developing length 
M Momentum operator 

Normal 
Nu Nusselt number 
O Origin 
p Pressure 
Pe Peclet number 
Pr Prandtl number 
q Heat flux, dimensional 
qi /-coordinate 
Rc Radius of coil 
Re Reynolds number 
r Radial coordinate 
S,  Source term 
s Axial coordinate 
s + s/2 Re 
T Temperature 

Tangential 
t Time 
x 1, x 2, x 3 Cartesian coordinates 
U Average axial velocity, dimensional 
u, u 1 Axial velocity 
v Radial velocity 
w, u 3 Orthogonal peripheral velocity 

Greek symbols 

q 
0 
0' 
2 
P 
V 

P 

Flow pattern transition parameter 
Torsion 
Nonorthogonal peripheral coordinate 
Orthogonal peripheral coordinate 
Curvature ratio 
Dynamic viscosity, dimensional 
Kinematic viscosity, dimensional 
Nonorthogonal peripheral velocity 
Density, dimensional 
Angle 
Physical variable 
Pseudo-stream function 

Subscripts 
av Average 
c Normalized 
fd Fully developed 
b Bulk 
i, j, k Index 
o Orthogonal 
w Wall 
1, 2, 3 Index 

Superscript 
' Dimensional quantity 
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be achieved by rotating the bases formed by the Frenet  frame 
/~ and N around the s axis. 

A given point in the pipe (s, r, 0) can be mapped to the master 
Cartesian system (xa, x2, x3) through the following equation: 

= / ~  + r cos 057 + r sin 0/3 (6) 

The mettles for the transformation are given by 

Oxk Ox~ 
go" (7) 

Oqi Oqj 

where q a = s .  q z = r .  q3=0~,  and 0 ' = 0 + f ( s ) .  The basic 
equations of the curve theory 

d57 
- -  = .B  - ~ (8) 
ds 

and 

d~ 
- q57 (9) 

ds 

can be applied to derive the metrics of the orthogonal  helical 
system. The curvature ratio is defined by 

Re 
- (10) 

R~ + (H/2u) 2 

and the torsion is 

(H/2n) 
t/ z Re + (H/27t) z (11) 

By forcing g~j = 0, for i # j ,  i,j = 1,2, 3, with a suitable 
choice on the function of f(s), the helical coordinate system 
(s, r, 0') is set to be orthogonal.  The metrics for the coordinate 
system can be obtained as 

h a = g~]2 = 1 + 2r sin 0 
h 2 - -  "11/2 1 (12) - -  t~22 

__ 0 1 / 2  h a -  33 r 

where 0 ' =  0 + qs. As shown in Figure 1, the cylindrical 
helical coordinate system (s, r, 0 ~) and the rectangular helical 
coordinate system (s, x o, Yo) are orthogonal.  Both orthogonal  
(s, r, 0 s) and nonorthogonal  (s, r, 0) coordinates share the same 
cross section. 

The governing equations are first derived in the orthogonal  
system (s, r, 0 t) and transformed to the nonorthogonal  system 
(s, r, 0), leaving the velocity components  untouched. The 
transformation is necessary to eliminate the s-dependent 
coefficients and variable (0 t -  qs), which always appears in 
place of 0. This allows an axially invariant solution to be 
realizable. Variables are nondimensionalized in the following 
manner:  

s' r' vt' u' v' w' Re p' 
S = - -  r = - -  t =  i t =  V W =  p - -  

a' a' ~ '  ~ '  = 2U' ~ '  4pV 2 

and 

R' H' 2aU I~Cp T ' -  T' w 
R ~ = - - S ~ , H = - - , R e =  , P r =  , T  

a a v k T b - T w 

The final governing flow equations after the necessary 
substitution and rearrangement are shown as follows. 

The continuity, 

1 (Ou ~u) 1 tO(rh~v) 10(hlw) 0 (13) 

h~ ~ s - - " ~  +rh 1 c3~ +rhl O0 

where h I is the metric coefficient in the axial direction 
(s-direction). 

ha = 1 + 2r sin 0 (14) 

The momentum and energy equations are given in the 
following form: 

(M + d~)4) = S¢ (15a) 

where the momentum or energy operator  M is defined by 

04) 2 ,  ~24) 1 c ~ [ (  cos0"X 104) ]  
M 4 ) = ~ + ~ s O 0  ~-~ss  R e u - 2 " r ~ - a  ) 4 ) - ~ s  j 

+ - -  rhl Re v4) - 
rha 

+ - -  Re (hlw - ,ru)4) - 1 + (15b) 
rh a ~ ~ ~ l  

4) stands for any velocity component  or the temperature. 
When 4) = T, the Reynolds number Re in Equation 15b is 
replaced by Pr Re. The individual momentum and energy 
equations are obtained by a specification of the velocity 
component  or the temperature 4), an extra diagonal term de and 
the source term S o . 

s-momentum: 4) = u 

vsin 0 + wcos 0 22 
d~ = ), Re + - -  (16a) 

h a h~ 

) 2 rsin°(Ov 
s ,  = - hi \Os - ~ ~ + h~ I_ \Os - 

o(  w)l   osov    +sinO, w  ,6b, + c o s  \Os " ~ 0  +h~ 

r -momentum: 4) = v 

1 + 2h~2r sin 0 
d ,  - (17a) r2h 2 

( ~ )  22 sin 0 (Ou aU) Op 2 sin 0 i/2 nt- 
S,~= - Or + R e  h, h 2 ~ s - "  

2 7 c o s 0  2 Ow 2h a - 1  
+ h31 - u  r 200 rh 2 2 c o s 0 w  (17b) 

0-momentum: 4) = w 

d , = R e V +  1 ( 2 h a - l )  
r h 2 22 "~ r (18a) 

@ ,~ cos 0 2:. cos 0 {~u  ~u'~ 
S,  - + Re u 2 ~ - -  - , ~  

~0 h a h 2 \Os 

2r + sin 0 3h 1 - 1 (?v 2 cos 0 
- -  2qu + + - -  v (18b) 

h~ r~h~ ~0 rhI 
W~th the assumption that the viscous dissipation is 

negligible and the fluid is incompressible with constant physical 
properties, the energy equation can be written as 

4)=  T, d ~ = 0 ,  S , = 0  (19) 

where the Reynolds number Re is replaced by the Peclet 
number Pe = Pr Re in Equation 15b. 

The physical boundary is defined by the pipe wall. Although 
a numerical scheme with a cylindrical coordinate system would 
normally have a condition set at the center of the pipe, the 
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centerline of the pipe is simply in the interior of the 
computational domain and does not need to be treated 
differently. The boundary and necessary conditions are 

u = v = w = T = 0  a t r = l f o r a l l s a n d 0  

p = 0 at one reference point inside the computational domain 
and 

S2, d O ~ r u d r  1 
- - (from the nondimensionalization) (20) 

n 2 

The inlet conditions for the flow and the temperature 
fields are given by 

v l , = o  = w l s = o  = 0 

dp =dp =0 
dr I,=o dO I,=o (21) 

Tl,=0 = 1 

f o r 0 _ < r _ < l  a n d 0 < 0 < 2 n .  
Two inlet axial flow conditions will be investigated. 

These are referred to as Parabolic axial velocity entry: 

ul,=o = 1 - r 2 (22) 

Uniform axial velocity entry: 

1 

uls=o = - (23) 
2 

The parabolic axial velocity entry defined by Equation 22 
together with Equation 21 corresponds to a flow having passed 
through a long straight pipe prior to entering the helical pipe. 
The uniform axial velocity entry defined by Equation 23 
together with Equation 21 are valid for a flow entering a helical 
pipe from a large reservoir. 

When the flow reaches the fully developed (i.e., axially 
invariant) stage, the (generic) transverse velocity field 
(v, ~) can be represented by a field potential, ~k, as follows: 

dq, 
rhav = - - -  (24a) 

d0 
0q, 

hl¢ = hxw - rlru = - -  (24b) 
dr 

where ~ is the body-centered peripheral velocity compo- 
nent. ~ is not an orthogonal velocity component, but does 
indicate the flow and transfer rate in the 0-direction. 

To the same extent as for two-dimensional (2-D) flows, the 
potential qJ can be called the (pseudo-) secondary flow-stream 
function. To compute the secondary flow-stream function, 
Equation 24b can be used after the velocity field is obtained. 
The pseudo-secondary flow-stream function was first in- 
troduced by Wang (1981) and was subsequently used by 
Germano (1982, 1989), Tuttle (1990), Xie (1990), and Liu and 
Masliyah (1993b, c). However, Germano (1982, 1989) and Xie 
(1990) considered that ~O is not a good choice for the purpose 
of representing the secondary flow. Tuttle (1990) and Liu and 
Masliyah (1993b) preferred to use ~b instead of the orthogonal 
velocity vectors. 

In an attempt to seek a more suitable representation, Xie 
(1990) followed the approach of Murata et al. (1981) by utilizing 
the nonorthogonal coordinate system. Based on the non- 
orthogonal base vectors of the plane (~, 0), he argued that one 
can form an "orthogonal engineering coordinate system" using 
the base vectors (~, 0, ~ x 0). Having the same base vectors on 
the cross-sectional plane, the "engineering coordinate system" 
and the original Frenet frame should not be different in 
property, based on Equations 2--4. The pseudo-stream function 
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given by Xie (1990) corresponds to our pseudo-secondary 
flow-stream function when 2 is negligibly small. However, his 
"stream function" ~O* based on the "engineering coordinate 
system" does not have stream-function properties, since its use 
does not satisfy the continuity equation. Moreover, for a torus, 
i.e., zero torsion, q/* reduces to ~* = S~ rw dr. Hence ~,* is not 
a proper choice for describing the helical flow. 

The experimental observations by Liou (1992) are a definite 
support for using the pseudo-secondary flow-stream function. 
His flow visualization was favorably compared with the results 
of Wang (1981) and Chen and Fan (1986), which were based 
on the nonorthogonal coordinate system. Liou's results for the 
flow pattern transition showed very good agreement with those 
predicted by Liu (1992) and Liu and Masliyah (1993b) for small 
Dean number flows. 

The normalized axial pressure gradient is directly related to 
the friction factor as follows: 

f Re = (25) 

From the governing equations (Equations 13 through 19), it 
can be seen that the controlling parameters are Pr, Re, 2, and q. 
However, it is more convenient to work with the fluid Prandtl 
number Pr, Dean number Dn, curvature ratio 2 and Germano 
number Gn. For the special case of large Dean number flows, 
the flow-pattern transition parameter y can be used instead of 
Gn. The dimensionless groups are summarized below: 

Pr - / i C p  (26) 
k 

[ Ro ]-.2 (27) Dn = Re 21/2 = Re R2 + (U/2n)23 

H/2n 
Gn = Re r /=  Re (28) 

R~ + (H/2r02 

= Gn Dn -a/2 = q(2 Dn)-  1/2 (29) 

and q are given by Equations 10 and 11, respectively. 
When loose coiling approximation is invoked, i.e., 2 ~ 0, 

forced convective heat transfer in a helical pipe becomes 
governed by Pr, Dn and Gn, or ~,. Consequently, for a torus, 
(Gn = 0) with small curvature ratio, Pr and Dn become the 
two controlling parameters. 

The normalized axial length s + is used to present the flow 
and heat transfer development. It is defined by 

S ~ S 

s + . . . .  (30) 
2a Re 2 Re 

To show the peripheral distribution of the heat transfer 
coefficient, a local Nusselt number is defined as follows: 

2ah_  2 0T ,= (31) 
N u ( 0 ) -  k T,v dr 1 

where h is the local heat transfer coefficient and T~, is the 
average fluid average temperature which is defined as: 

fo T~, = ~ dr ruT dO (32) 

The average Nusselt number, Nu is defined by 

2ah 1 12~ 
N u -  ~ - f ~ 3 o  (1 + 2 s i n 0 )  Nu(0)d0 (33) 
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where h is the axially weighted peripherally averaged heat 
transfer coefficient and is given by 

= q (34) 
2na(T'av- T')As' 

Here, q is the heat flux and As' is the pipe axial length 
measured along the pipe center. 

For convenience, the temperature distribution across a given 
pipe section is normalized by its average value Tar, i.e., 

T 
r c = - -  (35) 

T=v 

When no confusion arises, the superscript c will be dropped. 

3.  R e s u l t s  a n d  d i s c u s s i o n s  

Calculations were made for Dean numbers in the range of 
2 0 < D n < 5 0 0 0  for 0 . 1 < P r < 5 0 0 ,  0 . 0 1 < 2 < 0 . 2 5 ,  and 
y <0.1. The grid used in most cases for Dn < 2000 is 
n40 x 50fu, i.e., 40 non-uniform mesh points in the radial 
direction and 50 uniform mesh points in the full peripheral 
direction. For Dn = 2,000 and Dn = 5,000, the corresponding 
meshes are n60 x 50fu and nl00 x 60fu, respectively. 

Before we present the results for developing heat transfer, it 
is necessary to introduce the characterization of the fully 
developed laminar helical flows using the orthogonal and 
nonorthogonal coordinate systems. Figure 2 shows the 
secondary flow as represented by the two coordinate systems. 
Figures 2a and 2b are based on the orthogonal system, whereas 
Figures 2c and 2d are based on the non-orthogonal system. 
When torsion is large, Figures 2a and 2c show that the 
secondary flow patterns in the two coordinate systems are very 
different. From the perspective of the orthogonal system, 
Figure 2a shows a two-vortex structure with sources and sinks. 
When viewed in the nonorthogonal coordinate system, the 
secondary flow pattern is of a one-vortex type as shown in 
Figure 2c. However, when torsion is small, the secondary flow 
is of a normal two-vortex pattern, similar to that for a torus. 

The qualitative behavior of the axial flow and the secondary 
flow pattern is little affected by 2, q, and Dn when 2 < 0.6, 

a. y =  0 . 2 5 ,  - v = 0.03 

c. T= 0.25 

b. y = 0.02, - v = 0.03 

d. 7= 0.02 

Figure 2 Secondary f low structure variation with torsion for 
Dn = 100 and 2 = 0.01 (r /= y) 

-3 a. 7 = 0.01 

3 ~ t  

c. 7 =0.17 

b." =0.15 

d. 7= 

Figure 3 The axial wall shear rates distribution variation with the 
torsion 7 for Dn = 100 and 2 = 0.01 (~/= 7) 

7 < 0.01 for Dn > 50. The torsion effect on the flow is 
noticeable when ~ > 0.01. Figure 3 shows the effect of torsion 

du, . As shown in Figure 3a, on the axial wall shear rate - dr ,= x 

the values of the axial wall shear rate is the polar distance from 
the origin of the plot, and 0 is the nonorthogonal peripheral 
coordinate. Figures 3a to 3c show the peripheral variation of 
the shear rate when the flow is a two-vortex type. On the other 
hand, Figure 3d shows the variation for a one-vortex type flow. 
In the former case, the shear-rate peripheral variation is 
strongly dependent on y, whereas for the latter case, it is not 
dependent on 7. 

We shall now discuss developing heat transfer corresponding 
to both one- and two-vortex flows. 

3. I. Heat transfer Nusselt number  deve lopment  

Owing to the substantial magnitude of the secondary flow and 
to its oscillatory development (Liu 1992), the temperature 
profile and the Nusselt number are not expected to be 
monotonic (although they may not be regularly cyclic) in the 
course of the development along the axial direction. This 
oscillatory behavior was also observed experimentally (see 
Janssen and Hoogendoorn 1978). However, for a fully 
developed flow in a torus, periodic oscillation in the Nusselt 
number was found in the analysis of developing heat transfer 
by Tarbell and Samuels (1973). 

Figures 4 and 5 show the Nusselt number development for 
a torus having 2 = 1/41 for various Prandtl numbers. The 
oscillation in Nusselt number is evident even for the small Dean 
number, Dn = 21.86, and small Prandtl number, Pr = 0.707, a 
case shown in Figure 4. For comparison purposes, the 
experimental data by Janssen and Hoogendoorn (1978) for the 
same conditions as those used in the computation are also 
shown in Figures 4 and 5. It can be observed that the current 
predictions are in good agreement with the experimental results 
of Janssen and Hoogendoorn (1978). It is of interest to note that 
the agreement is very good even for the case of small Dn flows, 
as shown in Figure 4. 

Figures 6 and 7 show the Nusselt number development in 
helical pipes that have a finite pitch for different Prandtl 
numbers. It can be observed that in all cases, the Nusselt 
number varies nonmonotonically with the axial length. The 
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100 I 

11=0 

l0  

Pr = 0.707 

l . . . . . . . .  ' . . . . . . . .  ' . . . . . . . .  ' . . . . . . . .  ' 

0.0001 0.001 0.01 0.1 
S + 

Figure 4 Nusselt number development for a small Dn flow in torus 
with uniform axial velocity entry. V represents the experimental data 
of Janssen and Hoogendoorn (1978) 
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. . . . . . . .  ! . . . . . . . .  i . . . . . . . .  i . . . . . . . .  ~ abolic axial velocity entry 

\ ~ Dn = 200 
lOO \ ~ ~ = o.o, 

~ r I = 0.3535 

Uniform axial velocity entry ~ ~  

10 

. . . . . . . .  i . . . . . . . .  i . . . . . . . .  i . . . . . . . .  

0.0001 0.001 0.01 0.1 
S ÷ 

Figure 6 Nusselt number d e v e l o p m e n t  for a two-vortex flow with 
Dn = 200, 2 = 0.01, and 7 = 0.01 (r/= 0.01414) 

magnitude of the oscillation decreases with increasing axial 
length. The oscillations damp out as the flow becomes 
thermally fully developed. For  very large Dn number flows, it 
was found that the Nusselt number development does not differ 
qualitatively from that of smaller Dn  flows. When 7 < 0.2, the 
heat transfer development is similar to that for a torus where 
two vortices are present in the secondary flow. On the other 
hand, when y > 0.2, one vortex pattern appears in the 
secondary flow, and the heat transfer development is similar 
to that for a straight pipe. 

Figure 8 shows the variations of the local Nusselt number at 
the inner wall (0 = -7z/2), the upper wall (0 = 0), and the 
outer wall (0 = n/2), with axial length for a typical two-vortex 
flow with Dn = 2000, 2 = 0.1, and ~ = 0.001414 for Pr  = 0.707. 
From Figure 8, we observe that the local Nusselt number is 
oscillatory in the course of its development. The local 
maximum Nusselt number crosses over from the inner wall to 
the outer wall near the inlet. This behavior is very similar to 
that of the axial wall shear rate development (Liu 1992). The 
crossover points are Dn s ÷ = 0.20 (or s = 0.63) for Pr  = 0.707, 
Dn s ÷ = 0.19 (or s = 0.60) for Pr = 2, and Dn s + = 0.10 (or 
s = 0.32) for Pr  = 500. Figure 8 clearly shows that development 
of the local Nusselt number, Nu(0), is sensitive to the peripheral 
location. 

Figure 9 shows the asymptotic local Nusselt number 
distribution with 0 for both the two- and one-vortex flows. 
These two plots are in polar coordinates, and Nu(0) is measured 

by the polar distance. The horizontal and vertical lines 
correspond to the y- and x-axes of the nonorthogonal  (generic) 
coordinates. Figure 9a shows the local Nusselt number 
variation with 0 for a typical two-vortex flow of Dn = 200, 
2 = 0.01, and ? = 0.01, a case similar to a torus. We observe 
that the local Nusselt number reaches its maximum at the outer 
wall (0 = n/2) and its minimum at the inner wall (0 = -n /2 ) .  
Figure 9b shows the local Nusselt number variation with 0 for 
a typical one-vortex flow with Dn = 200, 2 = 0.01, and 
~, = 0.25, a case similar to a straight pipe. We observe that Nu(0) 
variation is very different from that of Figure 9a. Nu(0) is higher 
in the region of the inner upper wall (0 ~ - n/4) and smaller in 
the region of the lower outer wall (0 ,~ 3n/4). Comparing 
Figure 9a with Figure 9b, we observe that the local Nusselt 
number has a strong dependence on 0 for a two-vortex flow, 
whereas Nu(0) is relatively invariant with 0 for the case of a 
one-vortex flow. 

3.2. Temperature f ie ld  

The temperature distribution depends on the flow Dean 
number, the flow pattern transition parameter, and the fluid 
Prandtl  number. Figure 10 shows the temperature distribution 
for various Pr  for a fixed pipe geometry and flow Dean number. 
Figures 10a to 10c clearly indicate that the temperature profiles 
are strongly dependent on the fluid Prandtl  number. When 
Pr = 0.01, Figure 10a shows a temperature profile similar to 

X Dn = 312.3 

~ , ~  ~. = 0.02439 Pr = 460 
100 . r l=0 

y=0 

10 

0.0001 0.001 0.01 0.1 
S *  

Figure 5 Nusselt number of development for Dn = 312.3 in a torus 
with uniform axial velocity entry. V represents the experimental data 
of Janssen and Hoogendoorn (1978) 

. % ~  • . . . . . . .  i . . . . . . . .  i . . . . . . . .  

Uniform axial velocity entry 

" ~ ~ '  Parabolic axial velocity entry 

" ~ i 

10 Dn = 200, y= 0.01 
~. = 0.01,1"1 = 0.01414 

. . . . . . . .  i , = , , , , , . i  i , , , , , ,  

0.0001 0.001 0.01 0.1 

S ÷ 

Figure 7 Nusselt number d e v e l o p m e n t  for a one-vortex flow with 
Dn = 2 0 0 ,  2 = 0.01, and 7 = 0 . 2 5  ( t / =  o.353s) 
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. . . . . .  i . . . . . . . .  i . . . . . . . .  m . . . . . . . .  m 

k Crossover ,oo. \  / - 

, , , , . /  .... 0=o 

~" 10 Dn =20~':~"~'"--" ............... 
Pr = 0.707 \ 
~ , =  0 . 1  

r I = 0.02 \ 
~' = 0.001414 x ~  0 = -rt/2 

1 . . . . . . . . . . . . . . . . . . . . . .  ~ ~ . . . . . . . .  
0.1 1 10 100 

Dn s ÷ 

Figure 8 Local Nusselt number development for a typical 
two-vor tex f low with Dn = 2000, 2 = 0.1, and ~ = 0.001414 fo r  

Pr = 0.707. Uniform axial velocity entry 

that in a straight pipe. For  the case of Pr = 1, Figure 10b shows 
a temperature profile similar to the velocity profile shown in 
Figure 10d. When the fluid Prandtl  number  is large, Pr = 100, 
Figure 10c shows that the temperature profile splits into two 
parts at the vortex dividing line where a depression zone is 
found. When torsion is dominant,  i.e., a one-vortex flow is 
present, the temperature profile does not split in the center 
region, and it is similar to that for a straight pipe. 

3.3 Thermal developing length and asymptot& 
Nusselt numbers 

The thermal developing length, LNu , is defined as the length 
at which the peripherally averaged Nusselt number  varies 
within 1 percent of the fully developed peripherally averaged 
Nusselt number. That is, 

LNu = S+ IIN"--(N")fdl ~0.Ol(Nuifd (36) 

Some computed values of Nu and the thermal developing 
length are listed in Table 1 for the case of helical flow with a 
uniform axial velocity entry. The fully developed (asymptotic) 
values are listed without the fd subscript. The use of the 
subscript fd in Equation 36 is only for the purpose of avoiding 
confusion with the local values. 

Table 1 indicates that the thermal developing length is a 
function of the flow Dean number, the fluid Prandtl  number, 
and the coil geometrical parameters r / and  ~.. For  fixed Pr, 2, 
and ~/, the thermal developing length is a strong function of the 
flow Dean number, where LN~ decreases with Dn. Also, there 

a. 7 = 0.01 b. 7 = 0.25 

Figure 9 Fully developed Nu(0) variation with 0 for Dn = 200 and 
2 = 0.01 

• . 2 o o  . , o ~  

a .  P r  = 0 . 0 1  b .  P r  = 1 

~ o  o% ~ o  

e .  P r  = 1 0 0  d .  A x i a l  v e l o c i t y  profile 

Figure 10 Developed t e m p e r a t u r e  prof i les  for var ious  Pr values 
together with the axial velocity profile for a typical two-vortex flow 
with Dn = 200, 2 = 0.1, and r/= 0.05 (or 7 = 0.011"18) 

is a large dependence of LN, on Pr with the other parameters 
being fixed. Here LNo increases with Pr. The dependence of LNu 
on 2 and 1/is to a large extent a weak one. For example, for 
Dn = 100 for 2 = 0.1, a change in ~/from 0.05 to 0.15 gives a 
variation in LB, of about 20 percent. Here the flow pattern 
remains that of a two-vortex type. Similarly, for Dn = 200 and 
2 = 0.1, Table 1 indicates a very slight variation in LN, with ~/, 
especially for Pr = 1. Once again the flow remains a two-vortex 
type. However, there is a large variation of LNu when 
considering Dn = 200 and 2 = 0.01 for ~/= 0.014 to 0.354. This 
abrupt  change in LN, is due to the change in the flow pattern• 
For r /=  0.014 and 0.028, the flow has a two-vortex pattern, 
whereas for 7 = 0.283 and 0.354 the flow has a one-vortex 
pattern. To show more clearly the thermal-developing-length 
variation with torsion a plot of LNu versus ~, for the case of 
Dn = 100 and )~ = 0.0025 (q = 0.5~,) is shown in Figure 11. It 
can be observed that LN. is strongly dependent on 7 in the 
vortex transition region (0.1 < 7 < 0.3); otherwise, the devel- 
oping length increases with increasing torsion quite smoothly. 

We correlated the computed thermal developing length by 
neglecting 2 and r/ effects for 1/< 2 pipes. The thermal 
developing length is a function of both Dn and Pr. Our  results 
can be represented by 

0.155 + 0.00604 Dn 1/z Pr 1/4 
LN, -- Pr (37) 

1 + 0.0122 Dn Pr 

for 0.01 _< 2 < 0.15, q < 2,20 < Dn < 5000 and 0.1 < Pr _< 500. 
Janssen and Hoogendoorn (1978) gave a bound estimate on 

LNu as 

20 Pr °'2 
LN. ~ -  (38) 

Dn 

The above bound is in agreement with the LN, correlation given 
by Equation 37. 

From Table 1, one can also observe that similar to the 
thermal developing length, the asymptotic Nusselt number  is 
also strongly dependent on the flow Dean and Prandtl  
numbers. The asymptotic Nusselt number  is little affected by 
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Table  1. Developing lengths and asymptotic Nu values for uniform axial velocity entry 

Dn 2 r/ Pr Nu LNu Pr Nu LNu Pr Nu LNu 

21.86 0.024 0 0.707 4.01 0.0803 34 8.455 0.776 460 14.8 1.07 
91.47 0.143 0 0.1 4.590 0.0275 5 10.15 0.109 80 15.52 0.362 

100 0.1 0 1 8.694 0.0522 
100 0.1 0.05 1 8.688 0.0513 
100 0.1 0.1 1 8.675 0.0470 
100 0.1 0.15 1 8.651 0.0412 
182.9 0.143 0 0.1 5.186 0.0224 5 14.02 0.0746 
200 0.01 0.014 0.1 5.224 0.0215 5 14.35 0.0691 
200 0.01 0.028 0.1 5.260 0.0235 5 14.38 0.0691 
200 0.01 0.283 0.1 3.738 0.0343 5 4.569 0.1088 
200 0.01 0.354 0.707 3.74 0.0422 2 3.923 0.0868 500 7.189 0.391 
200 0.1 0 1 12.27 0.0399 100 25.5 0.0905 
200 0.1 0.05 1 12.03 0.0398 100 27.8 0.0950 
200 0.1 0.1 1 12.30 0.0390 100 28.04 0.102 
200 0.1 0.15 1 12.29 0.0380 100 25.52 0.105 
200 0.1 0.2 1 12.32 0.0376 
200 0.1 0.3 1 12.30 0.0398 
312.3 0.024 0 0.707 14.6 0,0328 34 22.33 0.123 460 30.25 0.214 
643 0.143 0 0.1 6.910 0,0154 2 23.00 0.034 5 24.67 0.0482 
680.3 0.143 0 0.707 20.1 0,0276 4 25.15 0.0342 10 27.00 0.0527 
721.7 0.083 0 0.707 21.9 0,0269 43 30.61 0.0883 500 50.2 0.1294 
2000 0.1 0.02 0.1 11.26 0,0112 1 37.74 0.0186 100 63.9 0.0485 
5000 0.1 0.02 0.1 20.25 0,0115 2 62.85 0.0137 500 123.0 0.0358 

curvature ratio and torsion. A more complete picture of the 
asymptotic Nusselt number variation with torsion can be 
observed in Figure 12. In the flow-pattern transition region 
(0.1 < Y < 0.3), the Nusselt number varies strongly with 7. 
However, once the flow is a one-vortex type, the Nusselt 
number varies little with y for all values of Pr studied. For very 
large Pr, Nu increases rapidly with torsion for ? < 0.02. 

For small torsion, r /<  2, we find that our predicted 
asymptotic Nu is in agreement with the correlation of 
Manlapaz and Churchill (1981) and only for 80 < Dn < 400 
and large Pr cases. The correlation due to Manlapaz and 
Churchill (1981) is given by { ( ron 
Nu = 1.158 Pr + 0.477,/ 

+ [3.657 + 4.343(1 957 "V2-]3) 1/3 
+ D ~ r )  J ;  (39) 

For small Pr cases, the Nu values obtained from this 
study are substantially lower than that predicted by Equation 

2.42,0 i I I I I "~l 
Dn = 100 / f ' 1  

I~ Pr = 500/, I "  | 
1.6~ X =0.0025 / / "  -1 

..1 1.2 I -  . . . . . .  P r - 5 .  

o.8L ,.̂  / J 

. . . . . . . . .  , . . . . . . . . .  , . . . . . . . .  l 
0 0.2 0.4 0.6 0.8 1.0 

Y 

FNure 11 Thermal developing length variation with ? for 
Dn = 100 and 2 = 0.0025 ( r /=  0.5?). Uniform axial velocity entry 

39. For Dn = 200, Pr = 0.1, Equation 39 overpredicts Nu by 
50 percent. When Dn is small, Equation 39 predicts Nu very 
poorly as well. For example, at Dn = 21.86 and Pr = 460, 
Equation 39 underpredicts Nu by 75 percent. However, our 
results are consistent with those of Akiyama and Cheng (1972), 
Tarbell and Samuels (1973), and Kalb and Seader (1974). In 
the range of 20 < Dn < 5000, 0.1 < Pr < 500 and r/< 2 < 0.15, 
the asymptotic Nusselt number can be represented by the 
following equation: 

(0.75 Dn 1/2 + 0.0028 Pr) Pr 1/8 
Nu = 3.657 + (40) 

(1 + 0.00174 Pr-a)(1 + 70.6 Pr-° '6/Dn) 

4. Conclusions 

Simultaneous hydrodynamic and thermal development of 
laminar flow in a helical pipe with a finite pitch was studied. 
Numerical simulations using parabolized formulation show 
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Figure 12 Asymptotic Nusselt number variation with ? for 
Dn = 100 and 2 = 0.0025 (r/= 0.5y) 
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good agreement  for the Nusselt  n u m b e r  development  for the 
limiting case of a torus. It is observed tha t  the local max imum 
Nusselt  n u m b e r  crosses over from the inner  wall to the outer  
wall in the course of its development  for small 7 flows. The 
thermal  developing length is correlated with P r  and  D n  when 
the effect of 2 and  r / can  be neglected. The fully developed (or 
asymptotic)  Nu  is found to be in good agreement  with 
published data.  

The thermal  ent rance length and  asymptot ic  Nusselt  n u m b e r  
show strong dependence on  ~, for 0.1 < 7 < 0.3. When  tors ion 
is dominan t  (~, > 0.2) all the heat  t ransfer  characterist ics tend 
to the limits corresponding to those of a Poiseuille flow. When  
torsion is small (~, < 0.2), all the thermal  characterist ics are 
similar to those of a torus. 
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